Grade 11/12 Math Circles
 March 20, 2024
 Primality Testing and Integer Factorization - Problem Set

1. Determine whether the following statements are true.

- $16 \equiv 51(\bmod 5)$
- $21 \equiv 0(\bmod 7)$
- $4 \equiv 12(\bmod 16)$
- $-4 \equiv 12(\bmod 16)$

2. Determine whether the following equalities are true:

- $[-4]=[16](\bmod 5)$
- $[2]=[14](\bmod 7)$.

3. Calculate $7^{200} \% 48$.
4. Calculate $11^{301} \% 1332$.
5. Calculate $3^{k} \% 10$, for $0 \leq k \leq 12$. What do you notice?
6. Show that if $m \geq 1$ has any odd prime factor, that $2^{m}+1$ is composite.
7. Show that if $m \geq 1$ is composite, then $2^{m}-1$ is composite.
8. Verify that 561 is a Carmichael number.
9. Find the four roots of the polynomial $x^{4}-1 \bmod 5$.
10. Find a modulus m such that $x^{2}+1$ has two roots.
11. How many bases must we choose to theoretically have a 99% chance that m is prime?
